Auf der Oberfläche der Corona-Viren befinden sich kleine Proteine mit einer ganz spezifischen Form, die sogenannten Spike-Proteine. Die nutzt man bei der Herstellung von mRNA-Impfstoffen. Zuerst identifizieren Forschende die mRNA im Corona-Virus, die diese Spike-Proteine herstellt, und vervielfältigen sie dann im Labor. Im nächsten Schritt umhüllen sie die Kopien der mRNA mit Fett und impfen sie in den Oberarm-Muskel. Das Fet
Auf der Oberfläche der Corona-Viren befinden sich kleine Proteine mit einer ganz spezifischen Form, die sogenannten Spike-Proteine. Die nutzt man bei der Herstellung von mRNA-Impfstoffen. Zuerst identifizieren Forschende die mRNA im Corona-Virus, die diese Spike-Proteine herstellt, und vervielfältigen sie dann im Labor. Im nächsten Schritt umhüllen sie die Kopien der mRNA mit Fett und impfen sie in den Oberarm-Muskel. Das Fet© Galileo
… in die Körperzellen. Diese nehmen die mRNA nämlich mit dem Bauplan für die Spike-Proteine aus dem Blut auf …
… in die Körperzellen. Diese nehmen die mRNA nämlich mit dem Bauplan für die Spike-Proteine aus dem Blut auf …© Galileo
… und produzieren nach kurzer Zeit selbst Spike-Proteine. Die haben dieselbe Struktur wie Corona-Viren.
… und produzieren nach kurzer Zeit selbst Spike-Proteine. Die haben dieselbe Struktur wie Corona-Viren.© Galileo
Das Immunsystem erkennt die Spike-Proteine als "fremd" und produziert dagegen Antikörper. Zudem "merken" sich die Immun-Gedächtniszellen die Struktur der Antikörper. Die Impfung regt außerdem die Bildung von T-Zellen an, welche später das Immunsystem beim Kampf gegen die Viren unterstützen.
Das Immunsystem erkennt die Spike-Proteine als "fremd" und produziert dagegen Antikörper. Zudem "merken" sich die Immun-Gedächtniszellen die Struktur der Antikörper. Die Impfung regt außerdem die Bildung von T-Zellen an, welche später das Immunsystem beim Kampf gegen die Viren unterstützen.© Galileo
Wenn sich nun später die oder der Geimpfte mit dem echten Corona-Virus infiziert, erkennt das Immunsystem sofort die Spike-Proteine und beginnt mit der Antikörper-Produktion. Diese binden an die Viren und verhindern so, dass sie in Körperzellen eindringen können. Die T-Zellen helfen dabei, bereits infizierte Zellen zu zerstören, bevor sich die Viren darin vermehren.
Wenn sich nun später die oder der Geimpfte mit dem echten Corona-Virus infiziert, erkennt das Immunsystem sofort die Spike-Proteine und beginnt mit der Antikörper-Produktion. Diese binden an die Viren und verhindern so, dass sie in Körperzellen eindringen können. Die T-Zellen helfen dabei, bereits infizierte Zellen zu zerstören, bevor sich die Viren darin vermehren. © Galileo
Auf der Oberfläche der Corona-Viren befinden sich kleine Proteine mit einer ganz spezifischen Form, die sogenannten Spike-Proteine. Die nutzt man bei der Herstellung von mRNA-Impfstoffen. Zuerst identifizieren Forschende die mRNA im Corona-Virus, die diese Spike-Proteine herstellt, und vervielfältigen sie dann im Labor. Im nächsten Schritt umhüllen sie die Kopien der mRNA mit Fett und impfen sie in den Oberarm-Muskel. Das Fet
… in die Körperzellen. Diese nehmen die mRNA nämlich mit dem Bauplan für die Spike-Proteine aus dem Blut auf …
… und produzieren nach kurzer Zeit selbst Spike-Proteine. Die haben dieselbe Struktur wie Corona-Viren.
Das Immunsystem erkennt die Spike-Proteine als "fremd" und produziert dagegen Antikörper. Zudem "merken" sich die Immun-Gedächtniszellen die Struktur der Antikörper. Die Impfung regt außerdem die Bildung von T-Zellen an, welche später das Immunsystem beim Kampf gegen die Viren unterstützen.
Wenn sich nun später die oder der Geimpfte mit dem echten Corona-Virus infiziert, erkennt das Immunsystem sofort die Spike-Proteine und beginnt mit der Antikörper-Produktion. Diese binden an die Viren und verhindern so, dass sie in Körperzellen eindringen können. Die T-Zellen helfen dabei, bereits infizierte Zellen zu zerstören, bevor sich die Viren darin vermehren.

© 2024 Seven.One Entertainment Group